Теорема гаусса для электрических полей. Московский государственный университет печати


Строгий вывод теоремы Остроградского – Гаусса довольно сложен, мы сделаем ее вывод для частного случая, который достаточно убедительно поддается обобщению. Теорема Остроградского – Гаусса позволяет определить поток вектора напряженности от любого количества зарядов. Для начала определим поток вектора напряженности через шаровую поверхность, в центре которой будет располагаться точечный заряд.

Отсюда следует, что из каждого точечного заряда выходит поток вектора напряженности, который равен значению q/εε 0 . Из обобщения данного положения выводится теорема Остроградского – Гаусса для общего случая – полный поток вектора напряженности через замкнутую произвольной формы поверхность равен алгебраической сумме электрических зарядов, заключенных внутри этой поверхности, поделенной на абсолютную диэлектрическую проницаемость ε а = εε 0 , то есть:

Где: n – количество зарядов, q i – заряд, заточенный внутри поверхности.

В системе Гаусса данное уравнения будет иметь вид:

Для потока вектора электрического смещения N D (вектора индукции) можно получить аналогичную формулу:

То есть, поток индукции через замкнутую произвольную поверхность равен алгебраической сумме электрических зарядов, которые охватываются этой поверхностью.

Если взять какую-то замкнутую поверхность, которая не охватывает заряд q, то каждая линия напряженности (или индукции) будет пересекать ее дважды – один раз она войдет в поверхность, а другой раз выйдет из нее. Из – за этого явления алгебраическая сумма линий индукции, проходящих через замкнутую поверхность, количество которых определяет полный поток индукции N D через эту поверхность будет равна нулю (N D = 0).

Прежде чем рассмотреть несколько частных случаев применения теоремы Остроградского – Гаусса для определения напряженностей различных электростатических полей, введем понятие о плотности зарядов.

– это физическая величина, которая характеризует распределение заряда вдоль линии (нити) или тонкого цилиндрического тела и численно равная отношению заряда к длине элемента нити:

А при равномерном распределении заряда по всей длине линейная плотность:

В СИ единицей измерения линейной плотности заряда τ будет 1 Кл/м.

Если заряд dq распределен по какому-то объему dV, то очевидно, что объемная плотность заряда будет численно равна соотношению заряда к элементу объема:

А при равномерном распределении заряда:

В системе СИ измеряется в 1 Кл/м 3 .

В случаях, когда заряд dq распределяется по поверхности dS и глубина его проникновения пренебрежительно мала, то поверхностная плотность заряда будет определена соотношением:

А в случае если заряд q по площади S распределен равномерно, то:

В системе СИ поверхностная плотность измеряется в Кл/м 2 .

Давайте вычислим , которое создано равномерно заряженной сферической поверхностью.

Предположим, что сферическая поверхность имеет радиус R и равномерно распределенный заряд q, то есть поверхностная плотность σ в любой точке сферы будет одинакова.

Выберем точку А, которая находится от центра сферы на расстоянии r (рисунок ниже):

Через точку А мысленно проведем новую сферическую поверхность S, симметричную заряженной сфере.

В данном случае через поверхность S поток вектора напряженности будет равен:

По теореме Гаусса N E = q/εε 0 . Отсюда следует, что при r>R:

Если сравнить данное соотношение с формулой напряженности поля точечного заряда, можно сделать вывод, что вне заряженной сферы напряженность поля такова, как если бы весь имеющийся заряд сферы был сосредоточен в ее центре.

Для точек, которые находятся на поверхности заряженной сферы с имеющимся радиусом R, по аналогии с уравнением (7) можно записать:

Если провести через точку В, которая находится внутри сферической заряженной поверхности, сферу S / с радиусом r /

Теперь давайте попытаемся определить напряженность поля, созданного равномерно заряженной нитью (цилиндром) бесконечной длины .

Предположим, что полая цилиндрическая поверхность с определенным радиусом R заряжена с постоянной поверхностной плотностью σ. Проведем коаксильную поверхность цилиндрического типа с радиусом r>R.

Через эту поверхность поток вектора напряженности будет равен:

По теореме Гаусса:

Приравняв правые части этих уравнений получим:

Из формулы (4а) находим, что линейная плотность заряда цилиндра равна:

Использовав это равенство, найдем:

Теперь давайте определим напряженность поля, которое создается равномерно заряженной бесконечной плоскостью.

Если предположить, что данная плоскость имеет бесконечную протяженность и заряд на единицу плоскости равен σ. Из законов симметрии следует вывод, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то одинаковыми по своей величине должны быть поля по обе стороны плоскости.

Если ограничить часть заряженной плоскости 1 воображаемым прямоугольным ящиком 2 (Гауссова поверхность) таким образом, чтобы ящик был рассечен пополам (рисунок ниже).

Обе грани ящика, которые имеют определенную площадь S, должны быть расположены параллельно заряженной плоскости. Вектору Е равен суммарный поток вектора напряженности, умноженному на площадь первой грани S, плюс поток вектора Е через противоположную грань. Через остальные грани поток напряженности будет равен нулю, так как их не пересекают линии напряженности.

Повторив предыдущие рассуждения и применив теорему Остроградского – Гаусса, получим следующее выражение:

Но Е = Е 1 = Е 2 . В таком случае напряженность поля бесконечной равномерной плоскости будет равна:

Координаты точки, в которой определяется напряженность поля, не входят в формулу (12). Отсюда следует вывод, что в бесконечной равномерно заряженной плоскости электростатическое поле будет однородным, а его напряженность в любой точке поля одинакова.

И, наконец, давайте определим напряженность поля, которое создается двумя бесконечными параллельными плоскостями, с одинаковыми плотностями и разноизменно заряженными.

Из рисунка выше видно, что между двумя бесконечными параллельными плоскостями, имеющими поверхностные плотности зарядов –σ и +σ, напряженность поля равна сумме напряженностей полей, которые создаются обеими пластинами, то есть:

Векторы Е вне пластин направлены противоположно друг другу и взаимно уничтожаются. Поэтому напряженность электрического поля в пространстве, которое окружает пластины, будет равно нулю (Е = 0).

Электростатическое поле наглядно можно изобразить с помощью силовых линий (линий напряженности). Силовыми линиями называют кривые, касательные к которым в каждой точке совпадают с вектором напряженности Е .

Силовые линии являются условным понятием и реально не существуют. Силовые линии одиночного отрицательного и одиночного положительного зарядов изображены на рис. 5 - это радиальные прямые, выходящие от положительного заряда или идущие к отрицательному заряду.

Если густота и направление силовых линий по всему объему поля сохраняются неизменными, такое электростатическое поле считается однородным (выделение">число линий должно быть численно равно напряженности поля Е .

Число силовых линий пометка">dS, перпендикулярную к ним, определяет поток вектора напряженности электростатического поля:

формула" src="http://hi-edu.ru/e-books/xbook785/files/17-1.gif" border="0" align="absmiddle" alt=" - проекция вектора Е на направление нормали n к площадке dS (рис. 6 ).

Соответственно поток вектора Е сквозь произвольную замкнутую поверхность S

пометка">S не только величина, но и знак потока могут меняться:

1) при формула" src="http://hi-edu.ru/e-books/xbook785/files/17-4.gif" border="0" align="absmiddle" alt="

3) при выделение">Найдем поток вектора Е сквозь сферическую поверхность S, в центре которой находится точечный заряд q.

В этом случае пометка">Е и n во всех точках сферической поверхности совпадают.

С учетом напряженности поля точечного заряда формула" src="http://hi-edu.ru/e-books/xbook785/files/18-2.gif" border="0" align="absmiddle" alt=" получим

формула" src="http://hi-edu.ru/e-books/xbook785/files/Fe.gif" border="0" align="absmiddle" alt=" - алгебраическая величина, зависящая от знака заряда. Например, при q <0 линии Е направлены к заряду и противоположны направлению внешней нормали n ..gif" border="0" align="absmiddle" alt=" вокруг заряда q имеет произвольную форму. Очевидно, что поверхность пометка">Е, что и поверхность S. Следовательно, поток вектора Е сквозь произвольную поверхность формула" src="http://hi-edu.ru/e-books/xbook785/files/Fe.gif" border="0" align="absmiddle" alt=".

Если заряд будет находиться вне замкнутой поверхности, то, очевидно, сколько линий войдет в замкнутую область, столько же из нее и выйдет. В результате поток вектора Е будет равен нулю.

Если электрическое поле создается системой точечных зарядов формула" src="http://hi-edu.ru/e-books/xbook785/files/18-4.gif" border="0" align="absmiddle" alt="

Эта формула является математическим выражением теоремы Гаусса: поток вектора напряженности Е электрического поля в вакууме через произвольную замкнутую поверхность равен алгебраической сумме зарядов, которые она охватывает, деленной на формула" src="http://hi-edu.ru/e-books/xbook785/files/18-6.gif" border="0" align="absmiddle" alt="

Для полноты описания представим теорему Гаусса еще и в локальной форме, опираясь не на интегральные соотношения, а на параметры поля в данной точке пространства. Для этого удобно использовать дифференциальный оператор - дивергенцию вектора, -

формула" src="http://hi-edu.ru/e-books/xbook785/files/nabla.gif" border="0" align="absmiddle" alt=" («набла») -

формула" src="http://hi-edu.ru/e-books/xbook785/files/19-1.gif" border="0" align="absmiddle" alt="

В математическом анализе известна теорема Гаусса-Остроградского: поток вектора через замкнутую поверхность равен интегралу от его дивергенции по объему, ограниченному этой поверхностью, -

формула" src="http://hi-edu.ru/e-books/xbook785/files/ro.gif" border="0" align="absmiddle" alt=":

формула" src="http://hi-edu.ru/e-books/xbook785/files/19-4.gif" border="0" align="absmiddle" alt="

Это выражение и есть теорема Гаусса в локальной (дифференциальной) форме.

Теорема Гаусса (2.2) позволяет определять напряженности различных электростатических полей. Рассмотрим несколько примеров применения теоремы Гаусса.

1. Вычислим Е электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Предположим, что сферическая поверхность радиуса R несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда всюду одинакова пометка">r >R от центра сферы мысленно построим новую сферическую поверхность S, симметричную заряженной сфере. В соответствии с теоремой Гаусса

формула" src="http://hi-edu.ru/e-books/xbook785/files/20-1.gif" border="0" align="absmiddle" alt="

Для точек, находящихся на поверхности заряженной сферы радиуса R, по аналогии можно записать:

выделение">внутри заряженной сферы, не содержит внутри себя электрических зарядов, поэтому поток пометка">Е = 0.

Когда зарядов много, при расчётах полей возникают некоторые трудности.

Преодолеть их помогает теорема Гаусса. Суть теоремы Гаусса сводится к следующему: если произвольное количество зарядов мысленно окружить замкнутой поверхностью S, то поток напряжённости электрического поля через элементарную площадку dS можно записать как dФ = Есоsα۰dS где α - угол между нормалью к плоскости и вектором напряжённости . (рис.12.7)

Полный же поток через всю поверхность будет равен сумме потоков от всех зарядов, произвольным образом распределённых внутри её и пропорционально величине этого заряда

(12.9)

Определим поток вектора напряжённости сквозь сферическую поверхность радиуса r, в центре которой расположен точечный заряд +q (рис.12.8). Линии напряжённости перпендикулярны поверхности сферы, α =0, следовательно соsα = 1. Тогда

Если поле образовано системой зарядов, то

Теорема Гаусса: поток вектора напряжённости электростатического поля в вакууме сквозь любую замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности, делённой на электрическую постоянную.

(12.10)

Если внутри сферы зарядов нет, то Ф = 0.

Теорема Гаусса позволяет сравнительно просто рассчитать электрические поля при симметрично распределённых зарядов.

Введём понятие о плотности распределенных зарядов.

    Линейная плотность обозначается τ и характеризует заряд q, приходящийся на единицу длины ℓ. В общем виде может быть рассчитана по формуле

(12.11)

При равномерном распределении зарядов линейная плотность равна

    Поверхностная плотность обозначается σ и характеризует заряд q, приходящийся на единицу площади S. В общем виде определяется по формуле

(12.12)

При равномерном распределении зарядов по поверхности поверхностная плотность равна

    Объёмная плотность обозначается ρ, характеризует заряд q, приходящийся на единицу объёма V. В общем виде определяется по формуле

(12.13)

При равномерном распределении зарядов она равна
.

Так как заряд q располагается на сфере равномерно, то

σ = const. Применим теорему Гаусса. Проведём сферу радиусом через точку А. Поток вектора напряжённости рис.12.9 сквозь сферическую поверхность радиуса равен соsα = 1, так как α = 0. По теореме Гаусса,
.

или

(12.14)

Из выражения (12.14) следует, что напряжённость поля вне заряженной сферы такая же, как напряжённость поля точечного заряда, помещённого в центре сферы. На поверхности сферы, т.е. r 1 = r 0 , напряжённость
.

Внутри сферы r 1 < r 0 (рис.12.9) напряжённость Е = 0, так как сфера радиусом r 2 внутри никаких зарядов не содержит и, по теореме Гаусса, поток вектора сквозь такую сферу равен нулю.

Цилиндр радиусом r 0 равномерно заряжен с поверхностной плотностью σ (рис.12.10). Определим напряжённость поля в произвольно выбранной точке А. Проведём через точку А воображаемую цилиндрическую поверхность радиусом R и длиной ℓ. Вследствие симметрии поток будет выходить только через боковые поверхности цилиндра, так как заряды на цилиндре радиуса r 0 распределены по его поверхности равномерно, т.е. линии напряжённости будут радиальными прямыми, перпендикулярными боковым поверхностям обоих цилиндров. Так как поток через основание цилиндров равен нулю (cos α = 0), а боковая поверхность цилиндра перпендикулярна силовым линиям (cos α = 1), то

или

(12.15)

Выразим величину Е через σ - поверхностную плотность. По определению,

следовательно,

Подставим значение q в формулу (12.15)

(12.16)

По определению линейной плотности,
, откуда
; подставляем это выражение в формулу (12.16):

(12.17)

т.е. напряжённость поля, создаваемого бесконечно длинным заряженным цилиндром, пропорциональна линейной плотности заряда и обратно пропорциональна расстоянию.

      Напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью

Определим напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью в точке А. Пусть поверхностная плотность заряда плоскости равна σ. В качестве замкнутой поверхности удобно выбрать цилиндр, ось которого перпендикулярна плоскости, а правое основание содержит точку А. Плоскость делит цилиндр пополам. Очевидно, что силовые линии перпендикулярны плоскости и параллельны боковой поверхности цилиндра, поэтому весь поток проходит только через основания цилиндра. На обоих основаниях напряжённость поля одинакова, т.к. точки А и В симметричны относительно плоскости. Тогда поток, через основания цилиндра равен

Согласно теореме Гаусса,

Так как
, то
, откуда

(12.18)

Таким образом, напряжённость поля бесконечной заряженной плоскости пропорциональна поверхностной плотности заряда и не зависит от расстояния до плоскости. Следовательно, поле плоскости является однородным.

      Напряжённость поля, создаваемого двумя разноименно равномерно заряженными параллельными плоскостями

Результирующее поле, создаваемое двумя плоскостями, определяется по принципу суперпозиции полей:
(рис.12.12). Поле, создаваемое каждой плоскостью, является однородным, напряжённости этих полей равны по модулю, но противоположны по направлению:
. По принципу суперпозиции напряжённость суммарного поля вне плоскости равна нулю:

Между плоскостями напряжённости полей имеют одинаковые направления, поэтому результирующая напряжённость равна

Таким образом, поле между двумя разноименно равномерно заряженными плоскостями однородно и его напряжённость в два раза больше, чем напряжённость поля, создаваемого одной плоскостью. Слева и справа от плоскостей поле отсутствует. Такой же вид имеет и поле конечных плоскостей, искажение появляется только вблизи их границ. С помощью полученной формулы можно рассчитать поле между обкладками плоского конденсатора.

Поток напряженности электрического поля, проходящий через замкнутую поверхность, пропорционален суммарному электрическому заряду, содержащемуся внутри этой поверхности.

В науке часто бывает, что один и тот же закон можно сформулировать по-разному. По большому счету, от формулировки закона ничего не меняется с точки зрения его действия, однако новая формулировка помогает теоретикам несколько иначе интерпретировать закон и испытать его применительно к новым природным явлениям. Именно такой случай мы и наблюдаем с теоремой Гаусса, которая, по существу, является обобщением закона Кулона , который, в свою очередь, явился обобщением всего, что ученые знали об электростатических зарядах на момент, когда он был сформулирован.

Вообще говоря, в математике, физике и астрономии найдется немного областей, развитию которых не посодействовал замечательный гений Карла Фридриха Гаусса. В 1831 году он вместе со своим молодым коллегой Вильгельмом Вебером (Wilhelm Weber, 1804–1891) занялся изучением электричества и магнетизма и вскоре сформулировал и доказал теорему, названную его именем. Чтобы понять, в чем заключается ее смысл, представьте себе изолированный точечный электрический заряд q . А теперь представьте, что он окружен замкнутой поверхностью. Форма поверхности в теореме не важна - это может быть пусть даже сдутый воздушный шарик. В каждой точке окружающей заряд поверхности, однако, наблюдается электрическое поле, образованное зарядом, а произведение напряженности этого электрического поля на сколь угодно малую единицу площади окружающей заряд поверхности, через которую проходят силовые линии поля, называется потоком напряженности электрического поля , и можно рассчитать поток напряженности, приходящийся на каждый элемент поверхности . Теорема Гаусса как раз и гласит, что суммарный поток напряженности электрического поля, проходящий через окружающую заряд поверхность, пропорционален величине заряда.

Связь между законом Кулона и теоремой Гаусса станет очевидной на простом примере. Предположим, что заряд q окружен сферой радиуса r . На удалении r от заряда напряженность электрического поля, которая определяется силой притяжения или отталкивания единичного заряда, помещенного в соответствующую точку, составит, согласно закону Кулона:

И то же самое значение мы получим для любой точки сферы заданного радиуса. Следовательно, суммарный поток напряженности электрического поля будет равен значению напряженности поля на удалении r от заряда, помноженному на площадь сферы (которая, как известно, равняется 4πr 2). Иными словами, суммарный поток будет равен:

4πr 2 × kq/r 2 = 4πkq

Это и есть теорема Гаусса.

Интересное следствие из нее получается, если применить эту теорему к сплошному металлу. Представьте себе цельнометаллический предмет и воображаемую замкнутую поверхность внутри него. Полный электрический заряд внутри такой поверхности будет нулевым, поскольку внутри окажется равное число положительных и отрицательных зарядов - протонов атомных ядер и электронов соответственно. Следовательно, поток напряженности электрического поля, проходящий через такую замкнутую поверхность, также будет равен нулю. Поскольку это верно для любой замкнутой поверхности внутри металла, это означает, что внутри металла не существует и не может существовать электрического поля.

Это свойство металлов часто используется экспериментаторами и инженерами-связистами для защиты высокочувствительных приборов от наведенных извне электрических помех. Обычно прибор просто окружается защитным медным экраном. Согласно теореме Гаусса, внешние электрические поля просто не в состоянии проникнуть внутрь такой оболочки и создать помехи работе прибора.

Другое интересное следствие теоремы Гаусса заключается в том, что если в дороге вас застала гроза, самое безопасное для вас - не выходить из машины, поскольку там вы окружены цельнометаллическим экраном. Даже если в ваш автомобиль ударит молния, внутри вам ничего не будет угрожать, поскольку весь разряд пройдет по корпусу и уйдет в землю. Резина, скорее всего, сгорит, зато сами вы останетесь в целости и сохранности.

Определим поток напряженности электростати­ческого поля зарядов q 1 ,q 2 ,...q n в вакууме (e=1) через произвольную замкнутую поверхность, окружающую эти заряды.

Рассмотрим сначала случай сферической повер­х­ности радиусом R, окружающей один заряд +q, нахо­дящийся в ее центре (рис.1.7).

, где - есть интеграл по замкнутой поверхности сферы. Во всех точках сферы модуль вектора одинаков, а сам он направлен перпендикулярно поверхности. Следовательно . Площадь поверхности сферы равна . Отсюда следует, что

.

Полученный результат будет справедлив и для поверхности S¢ произвольной формы, так как ее пронизывает такое же количество силовых линий.

На рисунке 1.8 представлена произвольная замкнутая поверхность, охватываю­щая заряд q>0. Некоторые линии напряженности то выходят из поверхности, то вхо­дят в нее. Для всех линий напряженности число пересечений с поверхностью являет­ся нечетным.

Как отмечалось в предыдущем параграфе, линии напря­женности, выходя­щие из объема, ограниченного замкнутой поверхностью, соз­дают положительный поток Ф е; линии же, входящие в объем, создают отрицательный поток -Ф е. Потоки линий при входе и выходе компенсируются. Таким образом, при расчете суммар­ного потока через всю поверхность следует учитывать лишь одно (не скомпенсированное) пересечение замкнутой поверхности каждой линией напряженности.

Если заряд q не охватывается замкнутой поверхностью S, то количество силовых линий, входящих в данную поверх­ность и выходящих из нее, одинаково (рис.1.9). Суммарный поток вектора через такую поверхность равен нулю: Ф Е =0.

Рассмотрим самый общий случай поверхности про­извольной формы, охватывающей n зарядов. По принципу суперпозиции электростатических полей напряженность , создаваемая зарядами q 1 ,q 2 ,...q n равна векторной сумме напряженностей, создавае­мых каждым зарядом в отдельности: . Проекция вектора - результирующей на­пряженности поля на направление нормали к пло­щадке dS равна алгебраической сумме проекций всех векторов на это направле­ние: ,

Поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заря­дов, охватываемых этой поверхностью, деленной на электрическую постоян­ную e 0 . Эта формулировка представляет собой теорему К.Гаусса.

В общем случае электрические заряды могут быть распределены с некоторой объемной плотностью , различной в разных местах пространства. Тогда суммарный заряд объема V, охватываемого замкнутой поверхностью S равен и теорему Гаусса следует записать в виде .

Теорема Гаусса представляет значительный практический интерес: с ее помо­щью можно определить напряженности полей, создаваемых заряженными телами различной формы.