Инверсная населенность уровней. Инверсная заселенность Создание инверсной населенности в активной среде


Рассмотрим двухуровневую систему с плотностью атомов на нижнем n 1 и верхнем n 2 по энергии уровнях.

Вероятность вынужденного перехода с первого уровня на второй равна:

где σ 12 – вероятность перехода под действием интенсивности излучения J .

Тогда число индуцированных переходов в единицу времени составит величину

.

Со второго уровня система может перейти двумя способами: вынужденно и спонтанно. Спонтанные переходы необходимы для того, чтобы система могла прийти в состояние термодинамического равновесия после окончания действия внешнего возбуждения. Можно рассматривать спонтанные переходы как переходы, вызываемые тепловым излучением среды. Число спонтанных переходов в единицу времени равно , где А 2 – вероятность спонтанного перехода. Число вынужденных переходов со второго уровня равно

.

Отношение эффективного сечения поглощения и излучения равно

где g 1 , g 2 кратности вырождения уровней.

Балансовое уравнение определяется суммой населенностей уровней, которая должны равняться полному числу n 0 частиц в системе n 1 + n 2 =n 0 .

Изменение населенностей со временем описывается следующими уравнениями.

Решение этих уравнений следующее.

.

Решение этих уравнений в стационарном случае, когда производные населенностей по времени равны нулю: будут:

Инверсная населенность двух уровневой системы будет при условии , или

.

Отсюда следует, что только когда кратность вырождения верхнего уровня больше чем кратность вырождения основного уровня с учетом потерь населенности за счет спонтанных переходов возможно состояние с инверсной населенностью. Для атомных систем это маловероятно. Однако возможно для полупроводников, поскольку кратность вырождение состояний зоны проводимости и валентной зоны определяется плотностью состояний.

Инверсная населенность трехуровневых систем

Если рассматривать систему трех уровней с энергиями Е 1 , Е 2 , Е 3 , причем Е 1 >Е 2 3 и населенностями n 1 , n 2 , n 3 , то уравнения для населенностей будут.

Решение этих уравнений относительно инверсной населенности без учета разности кратности вырождения уровней в стационарном случае будет:

В стационарном случае

.

Условие наличия инверсной населенности Δ>0 выполняется, если

.

Система трех уровней в полупроводниках можно рассматривать как систему, где нижний уровень – валентная зона, а два верхних уровня – два состояния зоны проводимости. Обычно внутри зоны проводимости вероятности безизлучательных переходов намного больше вероятности переходов зона – зона, поэтомуА 32 » А 31 , поэтому условие инверсной населенности будет:

Поскольку

,

где ρ 13 усредненная в полосе поглощения активного материала плотность энергии накачки это условие может быть выполнено.

Электропроводность в сильных электрических полях

Нелинейный закон Ома

В сильных электрических полях увеличивается сила, действующая на частицу, что приводит к увеличению скорости частицы. Пока скорость частицы меньше скорости теплового движения влияние электрического поля на электропроводность незначительно и выполняется линейный закон Ома. При увеличении напряженности электрического поля увеличивается дрейфовая скорость частицы, и зависимость электропроводности от напряженности электрического поля переходит в на линейную область.

Поскольку длина свободного пробега при рассеянии на колебаниях кристаллической решетки не зависит от энергии, то при увеличении напряженности электрического поля и дрейфовой скорости время релаксации уменьшится и уменьшится подвижность. Сила, действующая на частицу в электрическом поле напряженности Е равна еЕ . Эта сила вызывает ускорение и изменяет тепловую скорость частицы v T . Под действием электрического поля частица ускоряется и за единицу времени приобретает энергию, равную работе сил еЕ :

(7.1) .

С другой стороны, энергия теряемая частицей за одно столкновение или за время свободного пробега составляет небольшую долю (ξ) от полной энергии Т и в единицу времени . Поэтому можно записать: .

Приравнивая это выражение с формулой (7.1), можно получить уравнение для напряженности электрического поля и скорости частицы:

(7.2) , или . .

Для рассеяния на колебаниях длина свободного пробега постоянна, то зависит скорости от напряженности электрического поля будет:

(7.3) .

Откуда подвижность будет зависеть от напряженности электрического поля следующим образом:

С увеличением напряженности электрического поля подвижность уменьшается.

Нелинейный закон Ома в сильных полях будет иметь следующий вид: .

Эффект Зиннера

Эффект Зиннера проявляется в автоэлектронной эмиссии электронов за счет туннельного перехода зона – зона. При переходе электрона из одного узла кристаллической решетки в другой необходимо преодолеть потенциальный барьер, отделяющий два узла. Этот потенциальный барьер определяет ширину запрещенной зоны. Приложение электрического поля понижает потенциальный барьер в направлении противоположном направлению внешнего электрического поля и увеличивает вероятность туннельного перехода электрона из связанного с ядром состояния в зону проводимости. По своему характеру этот переход происходит с электронами валентной зоны и поток электронов будет направлен из узла кристаллической решетки в свободное состояние зоны проводимости. Это эффект называют также Зиннеровским пробоем или холодной эмиссией электронов. Он наблюдается в электрических полях с напряженностью 10 4 – 10 5 в/см.

Эффект Штарка

Эффект Штарка приводит к сдвигу энергии атомных уровней и расширению валентной зоны. Это аналогично уменьшению ширины запрещенной зоны и росту равновесной концентрации электронов и дырок.

В состояниях на расстоянии r 0 от ядра атома сила, действующая на электрон со стороны внешнего электрического поля, может уравновесить силу притяжения к ядру:

При этом возможен отрыв электрона от атома и перевод его в свободное состояние. Из формулы (7.6) расстояние ионизации равно:

Этот эффект понижает потенциальный барьер перехода электрона в свободное состояние на величину:

(7.7) .

Уменьшение потенциального барьера приводит к увеличению вероятности термического возбуждения на величину:

(7.8) .

Этот эффект наблюдается в электрических полях с напряженностью 10 5 – 10 6 в/см.

Эффект Гана

Этот эффект наблюдается в полупроводниках с двумя минимумами энергии зоны проводимости разной кривизны причем эффективная масса локального минимума должна быть больше эффективной массы основного состояния абсолютного минимума. При сильных уровнях инъекции электроны могут заполнять состояния основного минимума и переходить из основного минимума в другой локальный минимум. Поскольку масса электронов в локальном минимуме большая, то дрейфовая подвижность перешедших электронов будет меньше, что приведет к уменьшению электропроводности. Это уменьшение вызовет уменьшение тока и уменьшение инъекции в зону проводимости, что приведет к осаживанию электронов в основном минимуме зоны проводимости, восстановлению исходного состояния и увеличению тока. Вследствие этого возникают высокочастотные колебания тока.

Этот эффект наблюдался в GaAs n типа при подаче на образец длиной 0.025мм. импульса напряжения 16 в длительностью 10 8 Гц. Частота колебаний составляла 10 9 Гц.

Эффект Гана наблюдается в полях, при которых дрейфовая скорость сравнимой с тепловой скоростью электронов.

Экситоны в твердых телах

Природа экситона

Если кристалл возбуждается электромагнитным полем, то электроны из зоны проводимости переходят в валентную зону образуя электрон-дырочную пару: электрон в зоне проводимости и дырка в валентной зоне. Дырка представляется как положительный заряд, так как отсутствие отрицательного заряда электрона в электро ̶ нейтральной валентной зоне приводит к появления положительного заряда. Поэтому внутри пары происходит взаимодействие притяжения. Поскольку энергия притяжения отрицательна, то результирующая энергия перехода будет меньше чем энергия ширины запрещённой зоны на величину энергии притяжения между электроном и дыркой в паре. Эту энергию можно записать следующим образом:

где -e – заряд электрона, Ze - заряд атома, из которого перешёл электрон в зону проводимости, r eh – расстояние между электроном и дыркой, e- коэффициент, определяющий уменьшение взаимодействия между электроном и дыркой по сравнению с взаимодействиями точечных зарядов в вакууме или диэлектрическая постоянная микроскопического типа.

Если переход электрона происходит у нейтрального узла кристаллической решётки, то Z =1 и заряд дырки равен e заряду электрона с противоположным знаком. Если валентность узла отличается на единицу от валентности основных атомов кристаллической решётки, то Z =2.

Диэлектрическая проницаемость микроскопического типа e определяется двумя факторами:

· Взаимодействие между электроном и дыркой происходит в среде кристалла. Это поляризует кристаллическую решётку и сила взаимодействия между электроном и дыркой ослабляется.

· Электрон и дырку в кристалле нельзя представить как точечные заряды, а как заряды, плотности которых «размазаны» в пространстве. Это уменьшает силу взаимодействия между электроном и дыркой. Аналогичную ситуацию можно наблюдать в атомах. Взаимодействие между электронами в атоме в 5-7 раз меньше взаимодействия электрона с ядром, хотя расстояния между ними могут быть сравнимы. Это происходит вследствие того, что электроны на орбите не сосредоточены в одной точке, а характеризуются плотностью распределения, что уменьшает взаимодействие между ними. Ядро атома с хорошей степенью точности можно представить как точечный заряд, поэтому взаимодействие электронов с ядром будет больше взаимодействия между электронами, что и обеспечивает стабильность существования атомов.

Влияние этих двух факторов различно для экситонов различного типа: экситонов Френкеля (малого радиуса) и экситонов Ванье (большого радиуса).

Энергия и радиус экситона

Энергия связи экситона зависит от расстояния между электроном и дыркой. Электрон и дырка движутся относительно центра масс по орбите с радиусом экситона r eh . Для стабильного существования экситона необходимо, чтобы на орбите экситона образовывалась стоячая волна с числом волн n.. Откуда можно получить соотношение:

где р - количество движения электрона и дырки относительно друг друга. Количество движения можно выразить через кинетическую энергию Т относительного движения электрона и дырки: , где m приведённая масса экситона.

Приведённая масса экситона должна составляться из эффективных масс электрона и дырки, как средне гармоническая величина. Если масса дырки велика, то кинетическая энергия экситона или кинетическая энергия движения электрона относительно дырки должна определяться массой электрона. Поэтому

Если эффективные массы электронов и дырок равны, то приведённая масса экситона равна ½, если имеется локализованный экситон, то m h >>m e и приведённая масса экситона равна единице.

Для свободного экситона Z =1, m¢=1/2, энергия и радиус экситона равны

(8.7) .

Для локализованного экситона Z =2, m¢=1 энергия и радиус экситона равны

(8.8) .

Таким образом, получается, что энергия уровней свободного экситона в 8 раз меньше энергии локализованного экситона, а радиус в 4 раза больше.

На первый взгляд инверсию населенности можно создать в среде с двумя энергетическими уровнями Е 1 и Е 2 >Е 1. Например, это можно попытаться сделать путём облучения среды фотонами с частотой . Т.к. в нормальных условиях N 2 Е 2 , чем Е 2 => Е 1 .

Однако, когда населенности окажутся равными N 2 =N 1, процессы вынужденного излучения и поглощения будут компенсировать друг друга и инверсию создать будет невозможно.

Поэтому для лазеров применяют среды, в которых частицы могут занимать не два, а три или четыре уровня

С случае трехуровневой системы (рис.) уровень Е 2 должен быть метастабильными, т.е. время жизни частицы на этом уровне намного превышает время жизни на других уровнях возбуждённого состояния. Это означает, что W 21 <N 1 , которая используется для генерации лазерного излучения за счёт перехода Е 2 => Е 1 . Причём переход Е 3 => Е 2 происходит без излучения с передачей энергии кристаллической решетке в виде тепла. Пример такой среды – рубин с примесью ионов хрома.

В случае четырехуровневой системы метастабильным является уровень Е 2 , при этом W 21 <N 1 , которая используется для генерации лазерного излучения - за счёт перехода с Е 2 на Е 1 . Затем происходит быстрый переход с Е 1 на Е 0 без излучения. В четырехуровневой системе создать инверсию населенностей проще, т.к. уровень Е 1 первоначально заселен очень мало и уже при незначительном переводе частиц на уровень Е 2 создается инверсия населенностей. Пример – стекло с неодимом, а также газовая активная среда, применяемая в газовых СО 2 - лазерах. Создание инверсии населенностей в активной среде называется процессом накачки (или просто накачкой ).

При хаотическом тепловом движении распределение энергии среди атомов неравномерно. Некоторая часть атомов возбуждена, что соответствует их нахождению на более высоких, чем основной, уровнях энергии. В условиях теплового равновесия и при отсутствии внешнего электромагнитного поля большая часть атомов обладает минимумом энергии. Образно говоря, населенность верхних уровней меньше населенности нижних.

Под влиянием энергетических воздействий - повышения температуры, освещения, бомбардировки быстрыми частицами - доля возбужденных атомов возрастает, т. е. населенность верхних уровней увеличивается. Этот процесс иллюстрируется рисунком 102, а, б.

Казалось бы, по мере повышения температуры можно получить такое распределение частиц по уровням, при котором населенность верхних уровней больше, чем нижних. Но это не так. Ведь возбужденное состояние неустойчиво. По мере увеличения заселенности верхних уровней увеличивается вероятность спонтанных переходов, которые сопровождаются излучением.

В 1939 г. советский физик В. А. Фабрикант высказал предположение о возможности создания такого распределения частиц по энергиям, при котором число возбужденных атомов больше числа атомов, находящихся в основном состоянии (рис. 102, в). Такое состояние называют состоянием с инверсной населенностью уровней (от латинского inversio - переворачивать).

Выясним, какие особые свойства присущи состоянию с инверсной населенностью уровней.

При распространении света в веществе обычно происходит поглощение света. Это происходит потому, что в состоянии термодинамического равновесия число невозбужденных атомов в веществе много больше, чем число возбужденных, и, следовательно, фотоны чаще взаимодействуют с невозбужденными атомами, т. е. поглощаются веществом.

В веществе же с инверсной населенностью уровней число возбужденных атомов больше числа невозбужденных. При этом уменьшается вероятность встречи фотонов с невозбужденным атомом, т. е. уменьшается вероятность поглощения фотонов. Вещество становится более прозрачным или даже способным усиливать свет. Действительно, если в нем движется фотон, энергия которого в точности равна разности энергий атомов в состояниях (рис. 102, в), то, взаимодействуя с возбужденным атомом, такой фотон вызовет индуцированное излучение. В результате появится второй такой же фотон. Взаимодействуя с другими двумя возбужденными атомами, эти два фотона вызовут высвечивание еще двух атомов. В конечном счете вместо одного фотона из вещества выйдет много фотонов, что является усилением света. Усилению света способствует то обстоятельство, что фотоны с частотой

слабо поглощаются веществом. Среду называют активной, если в ней число индуцированных фотонов превышает число поглощенных.

Эти особенности сред с инверсной населенностью уровней были установлены в 1951 г. В. А. Фабрикантом, М. М. Вудынским и Ф. А. Бутаевой.

В 1964 г. Государственный комитет по делам изобретений и открытий выдал этим ученым диплом на открытие, в котором, в частности, говорится: «Установлено неизвестное ранее явление усиления электромагнитных волн при прохождении через среду, в которой концентрация частиц или их систем на верхних энергетических уровнях, соответствующих возбужденным состояниям, избыточна по сравнению с концентрацией в равновесном состоянии».


Если система находится в состоянии термодинамического равновесия с внешней средой, то вероятность того, что какой-либо атом находится на энергетическом уровне характеризуется множителями или Если общее число атомов составляющих систему, то число атомов, населяющих энергетические уровни т. е. населенности этих уровней, равно

Здесь - статистические веса данных уровней (степени вырождения), т. е. число различных состояний или наборов квантовых чисел для данного энергетического уровня.

Следовательно, соотношение населенностей этих энергетических уровней определяется выражением

В случае невырожденных состояний, т. е. когда имеем

Если то при термодинамическом равновесии населенность и температура, выраженная через отношение населенностей уровней, будет равна

Согласно второму закону термодинамики система всегда стремится к равновесию, и если какое-либо внешнее воздействие выведет

ее из состояния термодинамического равновесия (например, состояния атомов активатора в рубине после оптической накачки), тогда система путем перераспределения энергии сама перейдет в новое термодинамическое равновесие. Обычно такие процессы, возвращающие систему в состояние равновесия, называются релаксационными. Проанализируем выражение температуры системы через населенности энергетических уровней.

1. , если т. е. все атомы находятся в основном в устойчивом состоянии.

2. , если населенность т. е. низкие энергетические уровни имеют большую населенность, чем высокие. Эти состояния системы приближаются к равновесному состоянию.

3. Если в результате внешнего воздействия нам удалось перераспределить частицы в системе так, что населенность высоких энергетических уровней стала больше, чем низких, т. е. то легко убедиться, что этому состоянию отвечает отрицательное значение температуры Такое состояние системы называется состоянием с инверсной населенностью. Правда, следует учитывать, что при инверсной населенности распределение Больцмана не имеет места, поэтому определение отрицательной температуры можно рассматривать лишь как определение неравновесного состояния.